Extensions 1→N→G→Q→1 with N=C3xC22:A4 and Q=C3

Direct product G=NxQ with N=C3xC22:A4 and Q=C3
dρLabelID
C32xC22:A4108C3^2xC2^2:A4432,771

Semidirect products G=N:Q with N=C3xC22:A4 and Q=C3
extensionφ:Q→Out NdρLabelID
(C3xC22:A4):1C3 = C24:He3φ: C3/C1C3 ⊆ Out C3xC22:A4369(C3xC2^2:A4):1C3432,526
(C3xC22:A4):2C3 = C62:A4φ: C3/C1C3 ⊆ Out C3xC22:A436(C3xC2^2:A4):2C3432,555
(C3xC22:A4):3C3 = C3xA42φ: C3/C1C3 ⊆ Out C3xC22:A4369(C3xC2^2:A4):3C3432,750

Non-split extensions G=N.Q with N=C3xC22:A4 and Q=C3
extensionφ:Q→Out NdρLabelID
(C3xC22:A4).1C3 = C3.A42φ: C3/C1C3 ⊆ Out C3xC22:A4369(C3xC2^2:A4).1C3432,525
(C3xC22:A4).2C3 = C24:23- 1+2φ: C3/C1C3 ⊆ Out C3xC22:A4369(C3xC2^2:A4).2C3432,528
(C3xC22:A4).3C3 = C24:43- 1+2φ: C3/C1C3 ⊆ Out C3xC22:A4108(C3xC2^2:A4).3C3432,552
(C3xC22:A4).4C3 = C9xC22:A4φ: trivial image108(C3xC2^2:A4).4C3432,551

׿
x
:
Z
F
o
wr
Q
<